
Documentation:
Using AspectC++ for
Qt Application Development:

Ute Spinczyk and Olaf Spinczyk

Version 1.0, 28 April 2011

{us,os}@aspectc.org

http://www.aspectc.org

CONTENTS CONTENTS

Contents

1 Introduction 4

2 Installation 5

3 Aspect Weaving 6

4 Examples 7
4.1 “Hello Qt World” . 7
4.2 “Connection Graph” . 9

5 Further Information 11

6 Open Issues 11

3

1 INTRODUCTION

1 Introduction

Qt1 is a state-of-the-art cross-platform application and UI framework. It provides
C++ class libraries for user interfaces, graphics, networking, database access,
and a lot more. Qt applications are typically written in C++ even though interfaces
for other languages exist.

AspectC++2 extends C++ by specific language constructs that enable Aspect-
Oriented Programming.

Figure 1: Implementation of crosscutting concerns without and with AOP

Figure 1 illustrates how a project can benefit from this paradigm: While most
concerns of an implementation can be modularized using object-oriented pro-
gramming alone, the so-called crosscutting concerns affect many parts. Typical
examples are tracing and profiling code. This tangling of code, which implements
different concerns, complicates the software maintenance, make re-use more dif-
ficult, and contradicts with the principle of Separation of Concerns in general.
Aspect Oriented Programming on the other hand allows designers to isolate the
crosscutting concerns. In AspectC++ crosscutting concerns can be implemented
as aspects. So called pointcuts define where the aspects will take effect, allowing
the programmer to inject or replace code in any module.

This manual explains how Qt and AspectC++ can be combined. The As-
pectC++ tools are developed as an open source project and are available un-
der the GPL. They can be used for arbitrary development projects, regardless
whether they are commercial or non-commercial.

Section 2 describes the necessary tools and installation steps. Following,
Section 3 explains how moc-compiler, aspect weaver and C++ compiler act in
concert. Two simple introductory examples are presented in Section 4. The re-
maining two sections discuss further details, namely sources of additional infor-
mation on the AspectC++ languange (Section 5) and open issues, restrictions,

1visit http://qt.nokia.com
2visit http://www.aspectc.org

4

http://qt.nokia.com
http://www.aspectc.org

2 INSTALLATION

and problems that are relevant for Qt developers (Section 6).

2 Installation

The AspectC++ compiler is implemented as a code transformation tool that con-
verts AspectC++ code into semantically equivalent C++ code. This step is per-
formed by the “aspect weaver” tool ac++. Using ac++ directly is a bit complicated,
because the integrated AspectC++ has to be configured and the configuration
depends on the C++ compiler, which is being used. However, if g++ is used to
compile the application project a comfortable front end for ac++ called ag++ can
be used instead. The front end transparently calls g++ in order to determine the
parser configuration. Furthermore, when an AspectC++ program is being trans-
lated, ag++ internally calls ac++ for the code transformation from AspectC++ to
C++ and then also runs g++ for the translation into object code. Both tools can be
downloaded from the AspectC++ project web site:

http://www.aspectc.org

Besides the latest “releases” there are also “daily builds” of Windows and
Linux binaries and the source code3. The compressed tar archives can be un-
packed with “tar xjf <filename>”. Besides the two binaries the archive con-
tains some example code, a Makefile for building and running it, and the As-
pectC++ manuals. The most convenient way to use the tools is to move them
into a directory that is in your command search path, e.g. ~/bin on many Linux
systems. Make sure that both binaries are stored in the same directory.

Qt is available as a ready-to-use package in all major Linux distributions.
The package name and format differs. Make sure to have installed the devel-
opment package, which includes the Qt C++ header files, and not only the run-
time libaries. Alternatively, Qt can be downloaded and installed from the project’s
homepage.

The Makefiles for Qt applications are typically built with the help of qmake, a
tool that comes along with Qt and that converts a platform-independent project file
into a platform-specific Makefile. The behaviour of qmake can be adapted by so
called configuration features. The feature file acxx.prf will tell qmake to replace
the C++ compiler by ag++ and to take into account that all object files depend
on all aspect headers. acxx.prf can be downloaded from the Documentation

3If you are interested in integrating AspectC++ or the underlying Puma parser and code ma-
nipulation frame into commercial products, contact the AspectC++ developer team and ask for a
commercial license.

5

http://www.aspectc.org

3 ASPECT WEAVING

page at the AspectC++ web site. There you will also find the example code that is
shown in Section 4. To use the AspectC++ configuration feature you should store
the file acxx.prf anywhere on your file system and let the environment variable
QMAKEFEATURES name the directory. Refer to the documentation of qmake to
learn more about configuration features and the places qmake looks for those
files.

3 Aspect Weaving

As depicted in figure 2 the compilation process for a Qt project that is enriched by
aspects consists of several steps:

Figure 2: Compiling a Qt project with AspectC++

1. The Meta Object Compiler moc reads the header files of the Qt application
and generates C++ source files that implement the meta-object methods for
all Qt classes.

2. The AspectC++ Compiler ac++ reads the aspect headers, preprocesses
the C++ source code and determines where the given aspects must take
effect. It then weaves the aspects into the code, generating new source
files.

3. The C++ compiler compiles and links the woven files and creates an exe-
cutable.

As already mentioned, the wrapper tool ag++ provides a more convenient inter-
face than ac++ and is used to combine steps two and three.

6

4 EXAMPLES

4 Examples

4.1 “Hello Qt World”

Consider the well known “Hello world” program, implemented as a Qt application:

Listing 1 helloworld.cpp

#include <QAppl icat ion >
#include <QLabel>

i n t main (i n t argc , char ∗∗argv) {
QAppl ica t ion app (argc , argv) ;
QLabel h e l l o (" Hel lo , Qt wor ld ! " , 0) ;
h e l l o . show () ;
return app . exec () ;

}

The corresponding file helloworld.pro describes this simple Qt project in
a platform independent way:

Listing 2 helloworld.pro without aspects

CONFIG += qt
SOURCES += he l l owo r l d . cpp

With the information contained in the project file qmake can now generate a
platform-specific Makefile, that specifies all the rules and definitions necessary
to compile the project.

When executed the helloworld application will create a small window contain-
ing the label “Hello, Qt world!”.

AspectC++ provides the possibility to extend or modify a program without ex-
plicitly changing the source code. As an example the modifier aspect shown in
Listing 3 will extend the helloworld application to create a second QLabel widget
for messages from the aspect.

As described by the pointcut definition p1() the aspect takes effect, when the
exec() method is called on the application object. It then creates, instantiates

7

4.1 “Hello Qt World” 4 EXAMPLES

Listing 3 modifier.ah

i fndef __modif ier_ah__
#define __modif ier_ah__
#include <QLabel>
aspect mod i f i e r {

pointcut p1 () = c a l l ("% QAppl ica t ion : : exec () ") ;
advice p1 () : around ()
{

QLabel l a b e l ;
l a b e l . se tText (" aspect a c t i v e ") ;
l a b e l . show () ;
t jp−>proceed () ;

}
} ;
#endif

and shows another QLabel object. Finally it calls tjp->proceed() to execute
the original code of the pointcut, i.e. app.exec().

To compile the program, the project file must be edited: It should select the
acxx feature and name all aspect header files that belong to the project:

Listing 4 helloworld.pro with aspects

CONFIG += qt acxx
SOURCES += he l l owo r l d . cpp
ASPECT_HEADERS += mod i f i e r . ah

If the qmake feature file acxx.prf is properly installed (refer to section 2) a
call to qmake will then create a Makefile where the C++ compiler is replaced by
the ag++ compiler and where the object files also depend on the aspect header
files:

Listing 5 Makefile created by qmake

####### Compiler , t o o l s and opt ions
CC = gcc
CXX = ag++ −a mod i f i e r . ah −−Xcompiler
. . .
he l l owo r l d . o : mod i f i e r . ah
. . .

When the helloworld application is now rebuilt and executed, two little windows
will appear: The already known “Hello, Qt world!” label and a second “aspect
active” label:

8

4 EXAMPLES 4.2 “Connection Graph”

In a similar way aspects can be used to trace the execution of Qt applications,
to monitor and possibly change the values of some function’s arguments, to in-
troduce additional code and much more. There is no need to change the original
code. Many aspects can even be formulated without knowing any implementation
details. The following subsection will present a generic aspect that can be applied
on virtually any Qt application.

4.2 “Connection Graph”

One of the most outstanding features of Qt is its communication mechanism via
slots and signals: Qt objects can notify other objects about an event by emitting
signals. Sender and receiver need not know each other, because they will be cou-
pled dynamically calling QObject::connect(). This method binds a particular
event (the signal), for example clicked(), to a method (the slot) of the receiver
object. It is allowed to connect many signals to the same slot or to connect many
slots to the same signal, creating a possibly large communication network.

Listing 6 ConnectionViewer.ah

aspect ConnectionViewer {
pointcut connect () =

"% QObject : : connect (QObject ∗ , char ∗ , QObject ∗ , char ∗ ,
Qt : : ConnectionType) " ;

advice c a l l (connect ()) : before () {
QObject∗∗ ob jec t1 = (QObject ∗∗) t j p −>arg (0) ;
char∗∗ s i g n a l = (char ∗∗) t j p −>arg (1) ;
QObject∗∗ ob jec t2 = (QObject ∗∗) t j p −>arg (2) ;
char∗∗ s l o t = (char ∗∗) t j p −>arg (3) ;

_programInfo . addConnection (∗ object1 ,∗ s igna l ,∗ object2 ,∗ s l o t) ;
}

advice execution ("% main (. . .) ") : a f te r () {
_programInfo . p r i n t () ;

}
}

Listing 6 shows the most interesting part of the ConnectionViewer aspect. The
complete code can be downloaded from Documentation page of the AspectC++
web site.

9

4.2 “Connection Graph” 4 EXAMPLES

The ConnectionViewer aspect can visualize the connections between slots
and signals as a graph in the DOT language. The aspect consists of two advice.
The first takes effect whenever QObject::connect() is executed. It analyzes
the arguments of connect() to gather information about all slots and signals
that are used by the application. With the help of QObject::metaObject()
even the name of the involved classes can be determined. The second advice
takes effect immediately before the application terminates. It uses the informa-
tion gathered so far to print statements in the DOT language that describe the
connection graph.

External programs can convert the output into various graphics
formats. As an example figure 3 shows the connection graph of
qt-examples/dialogs/classwizard as described by the Connection-
Viewer aspect and converted to pdf by the dot program.4

QRadioButton 0x81011d8

 toggled(bool)

QCheckBox 0x81579d0

setEnabled(bool)

QCheckBox 0x81c8fe8

 toggled(bool)

QLabel 0x812f1d0

setEnabled(bool)

QLineEdit 0x818f568

setEnabled(bool)

QCheckBox 0x81163f8

 toggled(bool)

QLabel 0x8115fc0

setEnabled(bool)

QLineEdit 0x8115fd8

setEnabled(bool)

Figure 3: Connections created by classwizard

4dot - Graphviz version 2.20.2

10

6 OPEN ISSUES

5 Further Information

The AspectC++ language provides many more languages features than de-
scribed in the manual. At the project’s home page the following additional docu-
mentation is available and recommended for further reading:

AspectC++ Language Quick Reference Sheet: Gives a brief overview about
the AspectC++ language elements.

AspectC++ Language Reference: A detailed AspectC++ language description.

AspectC++ Compiler Manual: Explains the usage and command line options of
the AspectC++ compiler ac++.

Ag++ Manual: Explains the ag++ wrapper command, which provides a very sim-
ple interface to ac++ in environments with GNU g++ back-end compiler.

6 Open Issues

Special effort has been spent to make sure that the AspectC++ tools ac++ and
ag++ work well for Qt application code. For instance, we have created a test suite
that consists of all Qt example programs. A test aspect weaves advice code for
all potential call and execution joinpoints. Many bugs on the parser and aspect
weaver level have been fixed in order to run this test without errors. Furthermore,
we are testing the parser with all benchmarks, examples, and demos of the Mee-
GoTouch library. All together this is a test code base of significant size, which
we are compiling regularly in our automated build and test system Akut. The As-
pectC++ developer team will make sure that future versions of ac++ will also pass
these tests5. However, there are a number of open issues that will be described
in the following paragraphs:

Test platform Linux: At the moment our tests are only run on a MeeGo Linux
system with g++ 4.5.0. Other Linux systems and other g++ versions have
been tested as well, but not regularly. We have not spent any effort on
Windows, MacOS, or any other platforms, yet.

Covered language features: The regular tests with Qt applications do not cover
all AspectC++ language features. However, there are regression tests for
this purpose, which cover most of them. Nevertheless, some language fea-
tures don’t work as you might expect. For more details on open issues with

5visit http://akut.aspectc.org to inspect the latest test results

11

http://akut.aspectc.org/

6 OPEN ISSUES

ac++ aspect weaver refer to the AspectC++ Compiler Manual, which can be
downloaded from the AspectC++ homepage.

Co-operation with moc: The “meta object compiler” moc is a Qt-specific code
transformation tool. It allows Qt developers to declare slots and signals.
With the provided acxx Qt feature the aspect weaver runs after moc. This
has the advantage that ac++ “sees” all code that was generated by moc.
On the other hand ac++ can’t use the provided language extension. For
instance, it is not possible that aspects extend classes by slots or signals.

Handling of macro-generated code: ac++ is not yet able to transform code that
is generated by a C/C++ macro. Therefore users might see the following (or
similar) warning: “transformation within macro”. In this case advice matches
a joinpoint located in macro-generated code. However, ac++ cannot perform
the transformation. It is recommended to check the macro and the location
of its expansion. It is better to avoid matches like this by adapting the point-
cut expessions accordingly.
A special problem occurs here, because of the Q_OBJECT macro. This ex-
pands the declaration of several moc-generated member functions. All these
functions have to be avoided in the pointcut expressions of AspectC++/Qt-
applications. The example code that comes with this manual shows how
this can be achieved.

12

http://www.aspectc.org/fileadmin/documentation/ac-compilerman.pdf
http://www.aspectc.org

	Introduction
	Installation
	Aspect Weaving
	Examples
	``Hello Qt World''
	``Connection Graph''

	Further Information
	Open Issues

