
Program Instrumentation for Debugging and Monitoring with AspectC++∗

Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schröder-Preikschat
University of Magdeburg

Universiẗatsplatz 2
D-39106 Magdeburg, Germany

{mahrenho,olaf,wosch}@ivs.cs.uni-magdeburg.de

Abstract

Monitoring is a widely-used technique to check assump-
tions about the real-time behavior of a system, debug the
code, or enforce the system to react if certain deadlines are
passed. Program instrumentation is needed to insert moni-
toring code fragments into the monitored system if the mon-
itor is implemented without hardware support.

This paper describes a language-based approach to au-
tomated program instrumentation using the general pur-
pose aspect language AspectC++. The language is an ex-
tension to the C/C++ programming language. It provides
language features that allow a highly modular and thus
easily configurable implementation of monitoring tasks and
supports re-use of common implementations. Even though
the AspectC++ language provides a convenient level of ab-
straction no overhead is imposed on the system in compar-
ison to pure C/C++ code.

1. Introduction

Besides simulation and analytical modeling, measure-
ment is one of the three evaluation techniques available for
software systems. To measure the properties of a software
system its internal state must be exposed. To make this in-
ternal state visible to the outside world monitoring systems
are used.

There are three types of monitoring systems: software,
hardware and hybrid systems. Software monitors are soft-
ware extensions to an existing system. In contrast hardware
monitors log the states of the different hardware buses to
track the behavior of the software. Hybrid monitors take
advantage of both methods - they use software extensions
to generate special signal patterns on the observed buses
and external hardware devices to recognize and record the

∗This work has been partly supported by the German Research Council
(DFG), grant no. SCHR 603/1-1 and SCHR 603/2.

events. Both approaches have their pros and cons. Software
monitors on the one hand are cheap and highly flexible but
they perturb the monitored system. Hardware monitors on
the other hand do not necessarily interfere with the target
system. But these systems highly depend on the target pro-
cessor and thus are expensive and inflexible compared to a
software monitor.

Especially in real-time environments it is important to
use monitoring techniques. It is impossible to insure by
measurement that a system is real-time capable, i.e. if it
will meet its deadlines in the future. This is subject to the
system design. But monitoring can assist in making state-
ments about the time behavior of the system. If an algo-
rithm is real-time capable it is still unknown if it works in
time with a particular hardware. Monitoring should further
be used to check a system design, because if you can hold
certain deadlines in theory this does not guarantee the same
behavior in the real-world.

In this paper we will concentrate on automated program
instrumentation using AspectC++ to implement software
monitors. Program instrumentation is the act of injecting
monitoring code into the software system that is the subject
of the monitor. Different approaches to program instrumen-
tation are possible. It can be done by binary code transfor-
mation, link-time manipulation, special hooks in the virtual
machine (in case of an interpreted language), or by source
code transformation. The source code transformation ap-
proach has the following advantages:

Flexibility Monitoring is not restricted to interception of
functions call. At any point in the source code moni-
toring code can be injected.

Abstraction-level The recorded monitoring data can have
the abstraction level of programming language con-
structs.

Portability The instrumentation tool can be used for all tar-
get platforms that are supported by the programming
language.

In the following sections of this paper we will present a
language based approach to automated program instrumen-
tation by source code transformation. The main idea behind
this approach is that program instrumentation by code trans-
formation has a lot in common with compile-time aspect
weaving and that monitoring is a crosscutting concern of a
software system that should be implemented in a modular
way by aspects. All these terms (e.g. aspect and weaving)
are the vocabulary of aspect-oriented programming (AOP)
[10], which will be briefly introduced in section2.

Several languages that allow to facilitate aspect-oriented
programming are available today. For instance, AspectJ1

[9] is an extensions to the Java2 language that combines
the abstraction mechanisms of the object-oriented core lan-
guage with new language features for aspect-oriented pro-
gramming.

Real-world embedded and real-time systems are typi-
cally forced to get on with minimal resources in terms of
memory usage and CPU speed and cannot effort the ex-
pensive Java run-time environment. Therefore AspectC++
will be the better choice in many cases. AspectC++3 is a
language extension to C/C++ that has semantically a lot in
common with AspectJ but generates code that has the effi-
ciency of C/C++. Section3 will introduce the most impor-
tant concepts of this new language.

Section4will then show how these language features can
be used to implement an automated instrumentation process
very flexibly on a high abstraction level for the most impor-
tant classes of monitoring tasks. The paper ends with a dis-
cussion of related work in section5 and our conclusions in
section6.

2. Aspect-Oriented Programming

Aspect-oriented programming tries to solve the problem
that often a single dimension of functional decomposition
is not sufficient to implement all aspects of a program in a
modular way. This means that code that stems from a single
design decision is widely spread over the system. It cannot
be encapsulated in a single function, class or module. This
so calledaspect codeis tangled with the normalcomponent
codethat fits into the functional decomposition scheme. A
widely used example for this effect is the synchronization
code in non-sequential programs, which is also quite com-
mon in the embedded systems domain. There is a separate
design decision that says where synchronization code needs
to be and what the code has to do, but it cannot be encapsu-
lated cleanly.

1 AspectJ is a trademark of Xerox Corporation.
2Java is a registered trademark of Sun Microsystems, Inc. in the U.S.

and other countries.
3AspectC++ homepage:http://www.aspectc.org

AOP helps out of this dilemma, because an aspect-
oriented language environment allows to implement such
crosscutting concerns in modular units calledaspectsand a
tool – theaspect weaver– inserts code fragments that are
derived from the aspect code to wherever they are needed.
These insertion points are calledjoin points.

Figure 1 shows how aspect code is woven by the as-
pect weaver into component code. The generated code frag-
ments are strongly tangled, but the source code is organized
in a clean modular way.

Component
Code

Aspect
Code

Generated
Program
Code

Component A

Component B Component C

Component A

Component B Component C

Aspect A

Aspect B

uses uses

uses uses

Aspect Weaver

Figure 1. Weaving aspect code

Aspect weaving can be done at compile-time or at run-
time. In this paper we will focus oncompile-time aspect
weaving, because the additional cost for having an aspect
weaver in the target system performing run-time code injec-
tion is usually unacceptable for deeply embedded systems.

3. AspectC++

AspectC++ [13] is an extension to the C/C++ program-
ming language. It’s aim is to support aspect-oriented pro-
gramming even in domains where resource limitations do
not allow to use modern but more expensive languages.
This section will introduce the basic concepts of this new
language.

3.1. Pointcuts

In AspectC++ join points are defined as points in the
component code where aspects can interfere. A join point
refers to a method, an attribute, a type (class, struct or
union), an object, or a point from which a join point is ac-
cessed.

A pointcutis a set of join points described by apointcut
expression. Pointcut expressions are composed frommatch
expressionsused to find a set of join points,pointcut func-
tionsused to filter or map specific join points from a point-
cut, and algebraic operators used to combine pointcuts.

Match expressions are strings containing a search pat-
tern. AspectC++ can match type names as well as attribute
and method signatures. The wildcard symbol “%” allows
flexible searches. Figure2 shows examples for match ex-
pressions.

types: matches . . .
”int” the built-in scalar typeint
”Memory%” all classes, structs or unions having a

name starting withMemory
attributes:
”Chain* Chain::next” the attributenextof the classChain
”% State::%” all attributes of any type of the class

State
methods:
”int main(int, char**)” the functionmain having exactly the

given signature
”% printf(. . .)” printf with any number and types of

arguments and any result type
”void %(int, %)” functions with any name, taking an int

as first argument, and having a second
argument of any type

”void %::clear()” theclear methods without arguments
of any class

”void
Mode::set%(. . .)”

all methods ofMode having a name
that starts withset

Figure 2. Examples for match expressions

Match expressions alone are not sufficient to clearly
identify a join point. For example, consider a method match
expression. It will match not only all implementations
of matching methods, but also all calls to those methods.
To filter specific types of join points AspectC++ supports
pointcut functions. In figure3 the most important built-in
pointcut functions of AspectC++ are listed.

To support reuse of complex pointcut expressions As-
pectC++ allows to define named pointcuts. A named
pointcut can contain formal arguments, which represent
context exposed from the join points. This context in-
formation can be used by the aspect code, which is in-
serted at or called from the join point location. The fol-
lowing example shows the definition of a named pointcut
IRQ level call . It refers to all calls of the function
void IRQ::level(int) and exposes the single inte-
ger argument of that call.

pointcut IRQ_level_call(int irq_level) =
call("void IRQ::level(int)") && args(irq_level);

Pointcuts are the key language element to deal with the
crosscutting nature of aspects. They can describe points in
the static structure or the dynamic control flow of a program
in a very flexible way. There is no restriction to a specific
function, class, module, or other unit of functional decom-
position.

methods:
call(pointcut)
execution(pointcut)
callsto(pointcut)

call filters all join points that are method
calls whileexecutionextracts those join
points referring to the method imple-
mentation. callsto gives all correspond-
ing call join points to the execution join
points in the argument pointcut.

attributes:
get(pointcut)
set(pointcut)

getandsetselect any attribute access join
points from thepointcut.

types:
classes(pointcut)
derived(pointcut)
base(pointcut)
instanceof(pointcut)

classesdelivers only the classes, struc-
tures, and unions from a join point. With
derivedit is possible to refer to all types
in the pointcut expression and all classes
derived from them.basecan be used to
find all base types of classes in a point-
cut whileinstanceofcan be used to locate
objects of certain types.

scope:
within(pointcut) within derives all join points declared in

methods of types in thepointcut.
control flow:
cflow(pointcut)
reachable(pointcut)

cflow captures join points occurring in
the dynamic execution context of join
points in thepointcut. reachableresults
in all join point from which the argument
join points can be reached.

context:
that(type pattern)
target(type pattern)
args(type pattern,
. . .)

that returns all join points where the cur-
rent C++ this pointer refers to an ob-
ject which is an instance of the type de-
scribed bytype pattern. target finds all
join points where the target object is an
instance of the type intype pattern. args
filters all methods or attributes with a
matching signature.

Figure 3. Pointcut functions in AspectC++

3.2. Advice

An advice declaration can be used to specify code that
should run when the join points specified by a pointcut ex-
pression are reached:

advice IRQ_level_call(irq_level) : void after(int irq_level) {
cout << "Interrupt level set to " << irq_level << endl;

}

With this advice each call toIRQ::level(int) is
followed by the execution of the advice code, which prints
the number of the new interrupt level.

Different kinds of advices can be declared, includingaf-
ter advice that runs after the join point,beforeadvice that is
executed before the join point, andaroundadvice, which is

executed in place of the join point.Aroundadvice can ex-
plicitly request the execution of the original join point code
usingproceed() :

advice IRQ_level_call(irq_level) : void around(int irq_level) {
cout << "The interrupt level is about to change." << endl;
proceed();
cout << "Interrupt level set to " << irq_level << endl;

}

If the advice is not recognized as being of a predefined
kind, it is regarded as an introduction of a new method or
attribute to all join points contained in the pointcut expres-
sion. In this case the pointcut expression must only contain
join points of the type class.

pointcut all_classes() = classes("%");
advice all_classes() : void print() {

cout << "Address: " << (void*)this << endl;
}

To obtain more information about the current join
point, the advice code can use the object referenced by
thisJoinPoint . The methods defined onthisJoin-
Point provide access to static join point attributes like a
string representation of the join point, the argument types,
a unique ID, and the location of the join point in the source
code as well as a dynamic part, which contains for exam-
ple the current argument values of a call join point. This
language feature allows to implement generic advice code.
For instance, advice code can iterate over the arguments of
a function that is unknown at implementation time. Pos-
sible applications are execution trace aspects or argument
marshalling for a remote method invocation.

Even introductions can usethisJoinPoint . For ex-
ample the following code fragment extends the introduction
already presented above with printing of the class name.

advice all_classes() : void print() {
cout << "Address of " << thisJoinPoint->toString ()

<< " object: " << (void*)this << endl;
}

AspectC++ generates members of the object referenced
by thisJoinPoint overhead-free on demand by analyz-
ing the advice code.

3.3. Aspects

While named pointcut declarations can appear every-
where where declarations are allowed, advices can only be
defined inside anaspect declaration. Aspects in AspectC++
implement in a modular way crosscutting concerns and are
an extension to the class concept of C++. Additionally to at-
tributes and methods, aspects may also contain advice dec-
larations. This allows advice code to preserve state infor-
mation. Several examples of aspect implementations will
follow in the next section.

AspectC++ offers virtual pointcuts and aspect inheri-
tance to support the reuse of aspects. A virtual pointcut
can be redefined in a derived aspect and the inherited ad-
vice will use the new pointcut definition. Pointcuts can also
be pure virtual. In this case the pointcut definition has to be
overwritten by a derived aspect before it can be instantiated.
Aspects can also inherit from a class, but it is not possible
to derive a class from an aspect.

4. Program Instrumentation

The introduction section already mentioned that there
are different forms of program instrumentation. This sec-
tion concentrates on the the main uses of program instru-
mentation: debugging, profiling/measurement, and runtime
surveillance/monitoring.

When a program crashes or delivers wrong results, pro-
grammers often add print statements to the functions in-
volved to trace the program flow or the steps of a computa-
tion. This can also be done using an automated program in-
strumentation with AspectC++. The major benefit of using
aspects is that the program source need only be touched for
corrections or improvements after the bug has been found.
This avoids the risk of screwing things up by accident, e.g.
when removing the print statements.

The second use for program instrumentation is profiling
and measurement. Both are used in the evaluation phase
of the software development cycle. Profiling is referred to
as the process of collecting data about the way a program
or parts of it including the appropriate resources are used
during runtime. Examples are the rate of occurrence of
interrupts of the network driver or the number of calls to
different functions in the system. Knowing these numbers
gives an advice on parts of the system that are worth to be
optimized to improve the overall system performance. It
makes less sense to optimize a function that nearly never
gets called when there are several other functions that ac-
count for almost all the processing time. Measurement in
contrast gives absolute numbers on the time spend in a func-
tion or the resources used by it. These numbers can be
used to compare two implementations or one implemen-
tation with a specification or requirement to find the most
suitable version or to decide that it needs to be reworked
because it is to slow to guarantee a dead line in a real-time
application.

The last use mentioned above is runtime surveillance and
monitoring. They are closely related but we distinguish
them in the way that monitoring collects data at runtime
to make them visible to the outside where runtime surveil-
lance collects data to compare them with predefined values
to react in certain ways when they reach a threshold.

In the next subsections we will show three instrumen-
tation examples for measurement, monitoring/profiling and

runtime surveillance using AspectC++.

4.1. Example 1: Monitor Task Switches

The first examples shows how to monitor the context
switches of the PURE4 operating system. The system is
highly configurable, so the aspect can not exactly know,
which classes, interrupt handlers and so on will call the
scheduler. Also the internal structure of the scheduler
varies. The only thing we know about all possible configu-
rations is, that the innermost scheduler function isCorou-
tine::resume , so the aspect code can only use this
knowledge.

Figure4 shows the aspect code used to perform this in-
strumentation. Line 1 includes the header file for the sen-
sors of the monitoring system. The lines 2-13 define the
actual aspect. The first step is the definition of two point-
cuts – the first (switch) contains the execution join point
of the known method, the second (caller) contains all
execution join points from where the first pointcut can be
reached by direct or indirect calls. Indirect calls are calls to
functions that itself call the target function directly or indi-
rectly. The lines 7-12 define an around advice that replaces
all join points in the pointcutcaller with the given code
fragment. This replacement code instruments all functions
leading to the target function. It first calls a sensor that logs
the entry to the function, than executes the original function
body usingproceed() , and last calls a sensor to log the
completion of the function. We use thethisJoinPoint
object and its unique number to identify the sensor and the
events it generates in the event trace.

1 #include <Sensors.h>

2 aspect MonitorContextSwitch
3 {
4 pointcut switch() = execution("void Coroutine::resume()");
5 pointcut caller() = execution(reachable(switch()));
6 public:
7 advice caller() :
8 void around() {
9 Sensor::Log_entry(thisJoinPoint->id());

10 proceed();
11 Sensor::Log_exit(thisJoinPoint->id());
12 }
13 };

Figure 4. Monitor context switches

On a Pentium system this instrumentation introduces (in
addition to the sensor code [11]) an overhead of 40 byte
code and 4 byte data per join point. Most of this code is
only used for the static initialization of the context informa-
tion (unique join point id) stored in thethisJoinPoint
object. So the additional code including the sensor code
resulted in an average runtime overhead of 200 ns to 1000
ns per execution (depending on the sensor configuration).

4PURE [1] is an object-oriented operating system family that mainly
targets the area of deeply embedded systems. It is a development of our
group.

Cache effects and the memory speed have a significant in-
fluence on this – but it always has an upper bound.

The figure5 shows the measured results for a two-thread
configuration where each of the threads just calls the sched-
uler to switch to the next. The detailed view shows a single
switch from thread 1 to 2. The vertical dashed and dotted
lines mark the start and end ofCoroutine::resume .
The numbers5 on the timescale are processor cycles relative
to the first sensor event. With such a view developers are
able to identify inefficient implementations on this (time)
critical execution path.

...
pointcut caller() = within(classes("Coroutine" ||

"Actor" ||
"Activity")) &&

execution(reachable(switch()));
...

Figure 6. Restricted pointcut definition

One possible problem with this special instrumentation
is the possibly large number of inserted sensors which may
extend the monitored system above the available memory
– which is often tight especially in deeply embedded sys-
tems. One possibility to reduce the number of sensors is to
restrict the instrumentation to only some classes by extend-
ing the second pointcut definition with thewithin decla-
ration. The modified source is shown in figure6. A second
possibility is to optimize and streamline the sensors inserted
into the system – which is described in [11].

4.2. Example 2: Monitor the Memory Management
System

In the second example we show how to monitor the cre-
ation and destruction of objects in the system. There are
two reasons for doing this. First we try to find memory
leaks. Because nearly nobody uses a garbage collector in
C/C++ developers have to care about the allocated memory
themself. Second we like to know more about how the ap-
plication uses the memory. Maybe it often allocates and de-
stroys objects of the same class or it allocates and destroys
a large number of objects within a loop. If we know of
such a behavior it would be possible to optimize the mem-
ory management for this special cases or to transform the
application to use a special memory manager within certain
regions of the code.

Figure7 shows the source code for this aspect. In this
aspect we use a virtual pointcut definition. So the aspect
does not gets instantiated unless the virtual pointcut is over-
loaded with a concrete one in a derived aspect. The lines
20-22 and 23-25 give two examples for derived aspects. The
first selects only the classFoo, the second all classes for the
pointcut. This technique can be used to build some kind of a

5This times are measured on a 75MHz Pentium system.

 1

 2

Thread

 0.000 2.614 5.227 7.841 10.454 13.068 15.681 18.295 20.908 23.521 26.135 ms

 1

 2

Thread

13053
13086

13386
13581

13639

13656
13721

13737
cycle

st
ar

t
C

on
te

st
an

t:
:p

au
se

st
ar

t
C

on
te

st
::

pa
us

e

st
ar

t
A

ct
iv

it
y:

:s
ta

rt

en
d

A
ct

iv
it

y:
:s

ta
rt

en
d

C
on

te
st

::
pa

us
e

en
d

C
on

te
st

an
t:

:p
au

se

Figure 5. Context switches (overview, detailed)

1 #include <Sensor.h>

2 aspect Instances {
3 pointcut virtual pClasses () = 0;
4 advice pClasses () :
5 class Counter {
6 static int counter;
7 public:
8 Counter () {
9 counter++;

10 Sensor::Log(thisJoinPoint->id(), counter);
11 }
12 ˜Counter () {
13 counter--;
14 Sensor::Log(thisJoinPoint->id(), counter);
15 }
16 } __counter;
17 };

18 advice Instances::pClasses () :
19 int Instances::Counter::counter = 0;

20 aspect MonitorFooInstances : public Instances {
21 pointcut pClasses () = classes ("Foo");
22 };

23 aspect MonitorAllInstances : public Instances {
24 pointcut pClasses () = classes ("%");
25 };

Figure 7. Monitor object lifetimes

”Common Debugging Aspects Library” that includes a col-
lection of predefined debugging aspects that only have to be
applied to a set of classes when needed.

This aspect works very simple. It adds an inner class
and an attribute of this class to all selected classes in the
system. This inner class contains a static attribute to get
a per-class counter variable. Every time an object of the
instrumented class gets instantiated the constructor of this
inner class gets called and increases the instances counter.
The constructor also calls a sensor to record the time and
the instances counter. When the object is destroyed also
the destructor for the inner class is called. It then decreases
the instances counter and calls a sensor to record this event.
This data can later be used to analyze and evaluate the mem-
ory usage of the application. To initialize the static class at-
tribute of the inner class we use a second introduction (line
18,19). This adds a global, initialized variable for each in-
strumented class.

Figure 8 shows the results of a sample measurement6.
For this profiling task we instrumented a class that buffers

6This measurement has been done on a 66MHz PowerPC 823.

-2

0

2

4

6

8

10

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
in

st
an

ce
s

cpu clock cycles

Figure 8. Instances example results

incoming data between a device driver and the application
layer that works asynchronous to the driver. This diagram
shows several things: first that we do not forget to free any
objects and second that the messages arrive in a regular
pattern and are consumed by the application in a burst. It
also shows that these objects are created and destroyed on
a high rate (over 1000 per second) so a specialized memory
manager can noticeable improve the overall system perfor-
mance.

4.3. Example 3: Add Run-time Surveillance

The third example shows how to use AspectsC++ for
runtime surveillance. In a real-time environment a correctly
working component not only means to perform the spec-
ified functions but also to complete them in a predefined
time. So using general purpose components that are not de-
veloped with a real-time use in mind, are not guaranteed
to work properly in such an environment. A way to make
them usable is to add a timeout to force a bounded execution
time. The figures10 and11 depict the two possible scenar-
ios. Either the monitored call completes within the given
time bounds or the watchdog timer aborts it and returns to
the caller or activates an exception handler. Whether the
incomplete execution is acceptable (e.g. printing a debug
message) or not (e.g. storing data on a hard disc) has to be
decided by the system designer.

1 aspect GuardedExecution {
2 pointcut guarded() =
3 executions("void Log::output(const char*)") &&
4 cflow(executions("void doCriticalRequest()"));
5 advice guarded() : void around() {
6 guard.enter(10); // 10ms
7 proceed();
8 guard.leave();
9 }

10 };

Figure 9. Guarantee bounded execution times

Figure 9 shows the aspect code used for this exam-
ple. We first define a pointcut and select the execution of
Log::Output(...) for it. We additionally use the
cflow pointcut designator to select only those join points
which appear within the dynamic execution context of the
methoddoCriticalRequest() . So the aspect only
applies if the request was issued from a control flow origi-
nated indoCriticalRequest() . So the output method
can still be called with their original timing behavior, which
means a possibly infinite execution time. This technique is
not only useful in a real-time environment but can also be
used to add a timeout feature to functions in a black box
component.

time

execution

enter() leave()

doCriticalRequest()

execution time budget

component code

Log::output()

Figure 10. Call completed within time bounds

time

execution

enter()

doCriticalRequest()

component code

execution time budget

watchdog
expires

exception handler

Log::output()

Figure 11. Call exceeds time bounds

5. Related Work

Using aspect-oriented implementation techniques in
conjunction with C++ does not seem to be very popular in
the AOP community. Only very few contributions related
to C++ can be found in the proceedings of relevant confer-
ences and workshops of the last years. We explain this with

the overall “Java hype” and, more than that, with the lack
of tool support. For instance, L. Dominick describes “life-
cycle control aspects when applying the Command Proces-
sor pattern” and complains “because no weaver technology
was available, C preprocessor macros were used” [4].

A very interesting approach is followed by FOG [14].
FOG is a meta-compiler for C++ supporting a superset of
the language. Similar to the AspectC++ implementation it
is a source to source translator, but the language concept dif-
fers. In FOG the C++ “One Definition Rule” is replaced by
a “Composite Definition Rule”. This allows, for instance,
to define multiple classes with the same name, which FOG
will then merge into a single class. Functions and attributes
can be easily added this way to classes. Function code
can be extended with a similar mechanism. While FOG
seems to be ideally suited for subject-oriented programming
[6][12] the join point model is much less powerful in com-
parison to AspectJ/C++. Especially the algebraic operations
on “pointcuts” and the notion of control flow are useful in
many aspect implementations.

More powerful than the FOG approach is OpenC++ [2].
It allows a compiled C++ meta-program to manipulate the
base-level C++ code. Classes, types, and the syntax tree
of the base-level are visible on the meta-level and arbitrary
transformations are supported. OpenC++ allows aspect-
oriented programming, but language extensions that espe-
cially support AOP are not provided.

AspectC [3] is an aspect-oriented extension to plain C,
which is currently under development to study crosscutting
concerns in operating system code. It is not planned to
support C++ component code with this implementation [8].
AspectC also adopts the key concepts from AspectJ, but the
non-object-oriented nature of C forces AspectC to leave out
many useful features like using inheritance to compose as-
pects. As C is basically a subset of C++ the AspectC++
language extension can be used with C as well.

The need for program instrumentation especially for
measurement and monitoring exists for a long time and
there are some solutions that should be mentioned. The
first is the MC4P tool of the JUWEL system [5] that can
be used for the instrumentation of C++ code to monitor
method calls and the status of object attributes after such
a call. The second solution is the MDL language and its
compiler, which is part of the Paradyn Parallel Performance
Tools [7]. TheMetric Description Language(MDL) is used
to specify points in the program (call statements; procedure
entry, exit) where special code has to be inserted to calcu-
late the metric and a binary rewriter for the instrumentation.
Both systems use a concept similar to the join point model
of AspectC++, but the possible join points are limited in
comparison. In addition both systems are solely designed
for measurement and monitoring in a specific context and
not intended to implement highly reusable debugging and

monitoring code.

6. Conclusions and Future Work

In this paper we have introduced AspectC++ as a general
purpose language for aspect-oriented programming with
C/C++ and have demonstrated its usefulness and efficiency
for debugging and monitoring tasks by giving typical ex-
amples. Although it is in an early development phase, the
language can already be used for a wide range of applica-
tions (e.g. all the presented ones). AspectC++ enables to
develop reusable aspects by providing features like aspect
inheritance and virtual pointcut definitions. This allows a
clean separation of debugging and monitoring code from
the component code. The aspect code takes over a mediator
role between both as it is illustrated in figure12.

Concrete aspect
− where to monitor

Monitoring
run−time system

Component
code

Abstract base aspect
− how to monitor

Figure 12. The mediator role of aspects

The semantics of the AspectC++ language is closely re-
lated to AspectJ. Thus developers that are familiar with
AspectJ and C/C++ can benefit from their experiences.
AspectC++ is especially interesting for the deeply em-
bedded systems area, because in this domain C/C++ is
still the dominating programming language and the num-
ber of tools that allow aspect-oriented programming with
C/C++ is minimal. AspectC++ and a set of working
code examples is available for public download from
http://www.aspectc.org/ .

Future work will involve the implementation of missing
(planned but not mentioned in this paper or yet unknown)
AspectC++ language features as well as improvements to
the underlying PUMA framework7 (our C++ code transfor-
mation system). We will extend it to handle more non-
standard compiler specific C/C++ extensions to make it us-
able for large real-world projects and experiment with com-
plex application scenarios.

References

[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-
Preikschat, O. Spinczyk, and U. Spinczyk. The PURE
Family of Object-Oriented Operating Systems for Deeply

7PUMA homepage:
http://ivs.cs.uni-magdeburg.de/ ∼puma/

Embedded Systems. InProceedings of the 2nd IEEE In-
ternation Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’99), St. Malo, France, 1999.
IEEE Computer Society.

[2] S. Chiba. Metaobject Protocol for C++. InProceedings of
the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), pages 285–
299, Oct. 1995.

[3] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S.
Ong. Structuring Operating System Aspects. InCommuni-
cations of the ACM, pages 79 – 82, Oct. 2001.

[4] L. Dominick. Aspect of Life-Cycle Control in a C++ Frame-
work. In Proceedings of the Aspect-Oriented Programming
Workshop at ECOOP’99, Lisbon, Portugal, June 1999.

[5] M. Gergeleit.Automatic Instrumentation of Object-Oriented
Programs. Technical report, German National Research
Center for Information Technology, 1994.

[6] W. Harison and H. Ossher. Subject-Oriented Program-
ming (a Critique on Pure Objects). InProceedings of the
ACM Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), pages 411–
428, Woshington, D.C., Sept. 1993. ACM.

[7] J. K. Hollingsworth et al.MDL: A Language and Compiler
for Dynamic Program Instrumentation. Technical report,
Computer Sciences Department, University of Maryland;
Computer Sciences Department, University of Wisconsin,
May 1997.

[8] G. Kiczales, July 2001. Personal communications.
[9] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm,

and W. G. Griswold. An Overview of AspectJ. In J. L.
Knudsen, editor,ECOOP 2001 – Object-Oriented Program-
ming, volume 2072 ofLNCS. Springer-Verlag, June 2001.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP ’97), volume 1241 ofLec-
ture Notes in Computer Science, pages 220–242. Springer-
Verlag, June 1997.

[11] D. Mahrenholz. Minimal Invasive Monitoring. InPro-
ceedings of: The Fourth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2001), May 2001.

[12] H. Ossher and P. Tarr. Operation-Level Composition: A
Case in (Join) Point. InProceedings of the Aspect-Oriented
Programming Workshop at ECOOP’98, Brussels, Belgium,
July 1998.

[13] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: An Aspect-Oriented Extension to the C++ Pro-
gramming Language. InFortieth International Conference
on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), volume 10 ofConferences in Re-
search and Practice in Information Technology. ACS, 2002.

[14] E. D. Willink and V. B. Muchnick. Weaving a Way Past the
C++ One Definition Rule. InProceedings of the Aspect-
Oriented Programming Workshop at ECOOP’99, Lisbon,
Portugal, June 1999.

	1 . Introduction
	2 . Aspect-Oriented Programming
	3 . AspectC++
	3.1 . Pointcuts
	3.2 . Advice
	3.3 . Aspects

	4 . Program Instrumentation
	4.1 . Example 1: Monitor Task Switches
	4.2 . Example 2: Monitor the Memory Management System
	4.3 . Example 3: Add Run-time Surveillance

	5 . Related Work
	6 . Conclusions and Future Work

